A geodesic interior-point method for linear optimization over symmetric cones

We develop a new interior-point method for symmetric-cone optimization, a common generalization of linear, second-order-cone, and semidefinite programming. Our key idea is updating iterates with a geodesic of the cone instead of the kernel of the linear constraints. This approach yields a primal-dual-symmetric, scale-invariant, and line-search-free algorithm that uses just half the variables of a … Read more

On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming

Jordan Algebras are an important tool for dealing with semidefinite programming and optimization over symmetric cones in general. In this paper, a judicious use of Jordan Algebras in the context of sequential optimality conditions is done in order to generalize the global convergence theory of an Augmented Lagrangian method for nonlinear semidefinite programming. An approximate … Read more

On the symmetry of induced norm cones

Several authors have studied the problem of making an asymmetric cone symmetric through a change of inner product, and one set of positive results pertains to the class of elliptic cones. We demonstrate that the class of elliptic cones is equal to the class of induced-norm cones that arise through Jordan-isomorphism with the second-order cone, … Read more

Optimality conditions for nonlinear second-order cone programming and symmetric cone programming

Nonlinear symmetric cone programming (NSCP) generalizes important optimization problems such as nonlinear programming, nonlinear semidefinite programming and nonlinear second-order cone programming (NSOCP). In this work, we present two new optimality conditions for NSCP without constraint qualifications, which implies the Karush-Kuhn-Tucker conditions under a condition weaker than Robinson’s constraint qualification. In addition, we show the relationship … Read more

An improved projection and rescaling algorithm for conic feasibility problems

Motivated by Chubanov’s projection-based method for linear feasibility problems [Chubanov2015], a projection and rescaling algorithm for the conic feasibility problem \[ find \; x\in L\bigcap \Omega \] is proposed in [Pena2016], where $L$ and $\Omega$ are respectively a linear subspace and the interior of a symmetric cone in a finitely dimensional vector space $V$. When … Read more

An extension of Chubanov’s algorithm to symmetric cones

In this work we present an extension of Chubanov’s algorithm to the case of homogeneous feasibility problems over a symmetric cone K. As in Chubanov’s method for linear feasibility problems, the algorithm consists of a basic procedure and a step where the solutions are confined to the intersection of a half-space and K. Following an … Read more

Optimality conditions for problems over symmetric cones and a simple augmented Lagrangian method

In this work we are interested in nonlinear symmetric cone problems (NSCPs), which contain as special cases nonlinear semidefinite programming, nonlinear second order cone programming and the classical nonlinear programming problems. We explore the possibility of reformulating NSCPs as common nonlinear programs (NLPs), with the aid of squared slack variables. Through this connection, we show … Read more

On max-k-sums

The max-$k$-sum of a set of real scalars is the maximum sum of a subset of size $k$, or alternatively the sum of the $k$ largest elements. We study two extensions: First, we show how to obtain smooth approximations to functions that are pointwise max-$k$-sums of smooth functions. Second, we discuss how the max-$k$-sum can … Read more

A bound on the Carathéodory number

The Carathéodory number k(K) of a pointed closed convex cone K is the minimum among all the k for which every element of K can be written as a nonnegative linear combination of at most k elements belonging to extreme rays. Carathéodory’s Theorem gives the bound k(K) <= dim (K). In this work we observe … Read more

Primal-dual potential reduction algorithm for symmetric programming problems with nonlinear objective functions

We consider a primal-dual potential reduction algorithm for nonlinear convex optimization problems over symmetric cones. The same complexity estimates as in the case of linear objective function are obtained provided a certain nonlinear system of equations can be solved with a given accuracy. This generalizes the result of K. Kortanek, F. Potra and Y.Ye. We … Read more