Fast Bundle-Level Type Methods for unconstrained and ball-constrained convex optimization

It has been shown in \cite{Lan13-1} that the accelerated prox-level (APL) method and its variant, the uniform smoothing level (USL) method, have optimal iteration complexity for solving black-box and structured convex programming problems without requiring the input of any smoothness information. However, these algorithms require the assumption on the boundedness of the feasible set and … Read more

Conditional Gradient Sliding for Convex Optimization

In this paper, we present a new conditional gradient type method for convex optimization by utilizing a linear optimization (LO) oracle to minimize a series of linear functions over the feasible set. Different from the classic conditional gradient method, the conditional gradient sliding (CGS) algorithm developed herein can skip the computation of gradients from time … Read more

Randomized First-order Methods for Saddle Point Optimization

In this paper, we present novel randomized algorithms for solving saddle point problems whose dual feasible region is a direct product of many convex sets. Our algorithms can achieve ${\cal O}(1/N)$ rate of convergence by solving only one dual subproblem at each iteration. Our algorithms can also achieve ${\cal O}(1/N^2)$ rate of convergence if a … Read more

Gradient Sliding for Composite Optimization

We consider in this paper a class of composite optimization problems whose objective function is given by the summation of a general smooth and nonsmooth component, together with a relatively simple nonsmooth term. We present a new class of first-order methods, namely the gradient sliding algorithms, which can skip the computation of the gradient for … Read more

Accelerated Schemes For A Class of Variational Inequalities

We propose a novel method, namely the accelerated mirror-prox (AMP) method, for computing the weak solutions of a class of deterministic and stochastic monotone variational inequalities (VI). The main idea of this algorithm is to incorporate a multi-step acceleration scheme into the mirror-prox method. For both deterministic and stochastic VIs, the developed AMP method computes … Read more

An Accelerated Linearized Alternating Direction Method of Multipliers

We present a novel framework, namely AADMM, for acceleration of linearized alternating direction method of multipliers (ADMM). The basic idea of AADMM is to incorporate a multi-step acceleration scheme into linearized ADMM. We demonstrate that for solving a class of convex composite optimization with linear constraints, the rate of convergence of AADMM is better than … Read more

Accelerated Gradient Methods for Nonconvex Nonlinear and Stochastic Programming

In this paper, we generalize the well-known Nesterov’s accelerated gradient (AG) method, originally designed for convex smooth optimization, to solve nonconvex and possibly stochastic optimization problems. We demonstrate that by properly specifying the stepsize policy, the AG method exhibits the best known rate of convergence for solving general nonconvex smooth optimization problems by using first-order … Read more

Stochastic Block Mirror Descent Methods for Nonsmooth and Stochastic Optimization

In this paper, we present a new stochastic algorithm, namely the stochastic block mirror descent (SBMD) method for solving large-scale nonsmooth and stochastic optimization problems. The basic idea of this algorithm is to incorporate the block-coordinate decomposition and an incremental block averaging scheme into the classic (stochastic) mirror-descent method, in order to significantly reduce the … Read more

Mini-batch Stochastic Approximation Methods for Nonconvex Stochastic Composite Optimization

This paper considers a class of constrained stochastic composite optimization problems whose objective function is given by the summation of a differentiable (possibly nonconvex) component, together with a certain non-differentiable (but convex) component. In order to solve these problems, we propose a randomized stochastic projected gradient (RSPG) algorithm, in which proper mini-batch of samples are … Read more

The Complexity of Large-scale Convex Programming under a Linear Optimization Oracle

This paper considers a general class of iterative optimization algorithms, referred to as linear-optimization-based convex programming (LCP) methods, for solving large-scale convex programming (CP) problems. The LCP methods, covering the classic conditional gradient (CG) method (a.k.a., Frank-Wolfe method) as a special case, can only solve a linear optimization subproblem at each iteration. In this paper, … Read more