## Unharnessing the power of Schrijver’s permanental inequality

Let $A \in \Omega_n$ be doubly-stochastic $n \times n$ matrix. Alexander Schrijver proved in 1998 the following remarkable inequality \begin{equation} \label{le} per(\widetilde{A}) \geq \prod_{1 \leq i,j \leq n} (1- A(i,j)); \widetilde{A}(i,j) =: A(i,j)(1-A(i,j)), 1 \leq i,j \leq n \end{equation} We prove in this paper the following generalization (or just clever reformulation) of (\ref{le}):\\ For all … Read more