The alternating simultaneous Halpern-Lions-Wittmann-Bauschke algorithm for finding the best approximation pair for two disjoint intersections of convex sets

Given two nonempty and disjoint intersections of closed and convex subsets, we look for a best approximation pair relative to them, i.e., a pair of points, one in each intersection, attaining the minimum distance between the disjoint intersections. We propose an iterative process based on projections onto the subsets which generate the intersections. The process … Read more

Convergence Analysis of Processes with Valiant Projection Operators in Hilbert Space

Convex feasibility problems require to find a point in the intersection of a finite family of convex sets. We propose to solve such problems by performing set-enlargements and applying a new kind of projection operators called valiant projectors. A valiant projector onto a convex set implements a special relaxation strategy, proposed by Goffin in 1971, … Read more

New Douglas-Rachford algorithmic structures and their convergence analyses

In this paper we study new algorithmic structures with Douglas- Rachford (DR) operators to solve convex feasibility problems. We propose to embed the basic two-set-DR algorithmic operator into the String-Averaging Projections (SAP) and into the Block-Iterative Pro- jection (BIP) algorithmic structures, thereby creating new DR algo- rithmic schemes that include the recently proposed cyclic Douglas- … Read more