Partitioning a graph into low-diameter clusters

This paper studies the problems of partitioning the vertices of a graph G = (V,E) into (or covering with) a minimum number of low-diameter clusters from the lenses of approximation algorithms and integer programming. Here, the low-diameter criterion is formalized by an s-club, which is a subset of vertices whose induced subgraph has diameter at … Read more

Linear-size formulations for connected planar graph partitioning and political districting

Motivated by applications in political districting, we consider the task of partitioning the n vertices of a planar graph into k connected components. We propose an extended formulation that has two desirable properties: (i) it uses just O(n) variables, constraints, and nonzeros, and (ii) it is perfect. To explore its ability to solve real-world problems, … Read more