The min-Knapsack Problem with Compactness Constraints and Applications in Statistics

In the min-Knapsack problem, one is given a set of items, each having a certain cost and weight. The objective is to select a subset with minimum cost, such that the sum of the weights is not smaller than a given constant. In this paper we introduce an extension of the min-Knapsack problem with additional … Read more

The Hamiltonian p-median Problem: Polyhedral Results and Branch-and-Cut Algorithm

\(\) In this paper we study the Hamiltonian \(p\)-median problem, in which a weighted graph on \(n\) vertices is to be partitioned into \(p\) simple cycles of minimum total weight. We introduce two new families of valid inequalities for a formulation of the problem in the space of natural edge variables. Each one of the … Read more

A comparison of different approaches for the vehicle routing problem with stochastic demands

The vehicle routing problem with stochastic demands (VRPSD) is a well studied variant of the classic (deterministic) capacitated vehicle routing problem (CVRP) where the customer demands are given by random variables. Two prominent approaches for solving the VRPSD model it either as a chance-constraint program (CC-VRPSD) or as a two-stage stochastic program (2S-VRPSD). In this … Read more

The Largest Unsolved QAP Instance Tai256c Can Be Converted into A 256-dimensional Simple BQOP with A Single Cardinality Constraint

Tai256c is the largest unsolved quadratic assignment problem (QAP) instance in QAPLIB; a 1.48\% gap remains between the best known feasible objective value and lower bound of the unknown optimal value. This paper shows that the instance can be converted into a 256 dimensional binary quadratic optimization problem (BQOP) with a single cardinality constraint which … Read more

A parallel branch-and-cut and an adaptive metaheuristic to solve the Family Traveling Salesman Problem

This paper addresses the Family Traveling Salesman Problem (FTSP), a variant of the Traveling Salesman Problem (TSP), in which nodes are grouped into families and the goal is to determine the minimum cost route by visiting only a subset of nodes from each family. We developed two methods to solve the FTSP: (i) a parallel … Read more

Cutting-plane algorithm for sparse estimation of the Cox proportional-hazards model

Survival analysis is a family of statistical methods for analyzing event occurrence times. In this paper, we address the mixed-integer optimization approach to sparse estimation of the Cox proportional-hazards model for survival analysis. Specifically, we propose a high-performance cutting-plane algorithm based on reformulation of bilevel optimization for sparse estimation. This algorithm solves the upper-level problem … Read more

On optimally solving sub-tree scheduling for wireless sensor networks with partial coverage

Energy efficiency and balancing are very important issues from the perspective of increasing the lifetime of a wireless sensor network (WSN). In this study, we concentrate on energy balancing. Given a WSN, we consider the problem to minimize its total power consumption over consecutive time slots with respect to communication activities. Disjoint subsets of nodes … Read more

Benders-type Branch-and-Cut Algorithms for Capacitated Facility Location with Single-Sourcing

We consider the capacitated facility location problem with (partial) single-sourcing (CFLP-SS). A natural mixed integer formulation for the problem involves 0-1 variables x_j indicating whether faclility j is used or not and y_{ij} variables indicating the fraction of the demand of client i that is satisfied from facility j. When the x variables are fixed, … Read more

On the Complexity of Finding Shortest Variable Disjunction Branch-and-Bound Proofs

We investigate the complexity of finding small branch-and-bound trees using variable disjunctions. We first show that it is not possible to approximate the size of a smallest branch-and-bound tree within a factor of 2^(1/5) in time 2^(\delta n) with \delta < 1/5, unless the strong exponential time hypothesis fails. Similarly, for any \varepsilon > 0, … Read more

Branch-and-Bound Performance Estimation Programming: A Unified Methodology for Constructing Optimal Optimization Methods

We present the Branch-and-Bound Performance Estimation Programming (BnB-PEP), a unified methodology for constructing optimal first-order methods for convex and nonconvex optimization. BnB-PEP poses the problem of finding the optimal optimization method as a nonconvex but practically tractable quadratically constrained quadratic optimization problem and solves it to certifiable global optimality using a customized branch-and-bound algorithm. By … Read more