Optimization over Trained Neural Networks: Going Large with Gradient-Based Algorithms

When optimizing a nonlinear objective, one can employ a neural network as a surrogate for the nonlinear function. However, the resulting optimization model can be time-consuming to solve globally with exact methods. As a result, local search that exploits the neural-network structure has been employed to find good solutions within a reasonable time limit. For … Read more

Optimization over Trained (and Sparse) Neural Networks: A Surrogate within a Surrogate

In constraint learning, we use a neural network as a surrogate for part of the constraints or of the objective function of an optimization model. However, the tractability of the resulting model is heavily influenced by the size of the neural network used as a surrogate. One way to obtain a more tractable surrogate is … Read more

Optimization Over Trained Neural Networks: Taking a Relaxing Walk

Besides training, mathematical optimization is also used in deep learning to model and solve formulations over trained neural networks for purposes such as verification, compression, and optimization with learned constraints. However, solving these formulations soon becomes difficult as the network size grows due to the weak linear relaxation and dense constraint matrix. We have seen … Read more