Statistical Inference of Contextual Stochastic Optimization with Endogenous Uncertainty
This paper considers contextual stochastic optimization with endogenous uncertainty, where random outcomes depend on both contextual information and decisions. We analyze the statistical properties of solutions from two prominent approaches: predict-then-optimize (PTO), which first predicts a model between outcomes, contexts, and decisions, and then optimizes the downstream objective; and estimate- then-optimize (ETO), which directly estimates … Read more