Convergence of Mean-Field Langevin Stochastic Descent-Ascent for Distributional Minimax Optimization
We study convergence properties of the discrete-time Mean-Field Langevin Stochastic Descent-Ascent (MFL-SDA) algorithm for solving distributional minimax optimization. These problems arise in various applications, such as zero-sum games, generative adversarial networks and distributionally robust learning. Despite the significance of MFL-SDA in these contexts, the discrete-time convergence rate remains underexplored. To address this gap, we establish … Read more