A Unified Theorem on SDP Rank Reduction

We consider the problem of finding a low-rank approximate solution to a system of linear equations in symmetric, positive semidefinite matrices. Specifically, let $A_1,\ldots,A_m \in \R^{n\times n}$ be symmetric, positive semidefinite matrices, and let $b_1,\ldots,b_m \ge 0$. We show that if there exists a symmetric, positive semidefinite matrix $X$ to the system $A_i \bullet X … Read more

Approximating the Radii of Point Sets

We consider the problem of computing the outer-radii of point sets. In this problem, we are given integers $n, d, k$ where $k \le d$, and a set $P$ of $n$ points in $R^d$. The goal is to compute the {\em outer $k$-radius} of $P$, denoted by $\kflatr(P)$, which is the minimum, over all $(d-k)$-dimensional … Read more

A Tractable Approximation of Stochastic Programming via Robust Optimization

Stochastic programming, despite its immense modeling capabilities, is well known to be computationally excruciating. In this paper, we introduce a unified framework of approximating multiperiod stochastic programming from the perspective of robust optimization. Specifically, we propose a framework that integrates multistage modeling with safeguarding constraints. The framework is computationally tractable in the form of second … Read more