Sharpness and well-conditioning of nonsmooth convex formulations in statistical signal recovery

\(\) We study a sample complexity vs. conditioning tradeoff in modern signal recovery problems where convex optimization problems are built from sampled observations. We begin by introducing a set of condition numbers related to sharpness in \(\ell_p\) or Schatten-p norms (\(p\in[1,2]\)) based on nonsmooth reformulations of a class of convex optimization problems, including sparse recovery, … Read more

Low-rank matrix recovery with composite optimization: good conditioning and rapid convergence

The task of recovering a low-rank matrix from its noisy linear measurements plays a central role in computational science. Smooth formulations of the problem often exhibit an undesirable phenomenon: the condition number, classically defined, scales poorly with the dimension of the ambient space. In contrast, we here show that in a variety of concrete circumstances, … Read more