Skip to content

Optimization Online

  • Welcome
  • Repository
  • Submit
  • About
  • Help
  • My Eprints

Jurgen Lentz

The SCIP Optimization Suite 9.0

Published: 2024/02/26
  • Suresh Bolusani
  • Mathieu Besançon
  • Ksenia Bestuzheva
  • Antonia Chmiela
  • Joao Dionisio
  • Tim Donkiewicz
  • Jasper van Doornmalen
  • Leon Eifler
  • Mohammed Ghannam
  • Ambros Gleixner
  • Christoph Graczyk
  • Katrin Halbig
  • Ivo Hedtke
  • Alexander Hoen
  • Christopher Hojny
  • Rolf van der Hulst
  • Dominik Kamp
  • Thorsten Koch
  • Kevin Kofler
  • Jurgen Lentz
  • Julian Manns
  • Gioni Mexi
  • Erik Mühmer
  • Marc E. Pfetsch
  • Franziska Schlösser
  • Felipe Serrano
  • Yuji Shinano
  • Mark Turner
  • Stefan Vigerske
  • Dieter Weninger
  • Liding Xu
  • Categories Integer Programming, Linear, Cone and Semidefinite Programming, Optimization Software and Modeling Systems Tags branch-and-cut algorithm, Branch-and-price algorithm, column generation, constraint integer programming, linear programming, Mixed-integer Linear Programming (MILP), Mixed-integer nonlinear programming (MINLP), mixed-integer semidefinite programming, optimization solver, parallelization

    The SCIP Optimization Suite provides a collection of software packages for mathematical optimization, centered around the constraint integer programming (CIP) framework SCIP. This report discusses the enhancements and extensions included in the SCIP Optimization Suite 9.0. The updates in SCIP 9.0 include improved symmetry handling, additions and improvements of nonlinear handlers and primal heuristics, a … Read more

    Log in


    Repository

    Author List

    Months

    Categories

    Keywords

    alternating direction method of multipliers approximation algorithms augmented lagrangian method bilevel optimization Branch-and-Bound branch-and-cut chance constraints column generation combinatorial optimization complexity conic optimization convex optimization cutting planes decomposition derivative-free optimization distributionally robust optimization duality dynamic programming first-order methods global convergence global optimization heuristics integer programming interior point methods large-scale optimization linear programming machine learning mixed-integer linear programming mixed-integer nonlinear programming mixed-integer programming multiobjective optimization nonconvex optimization nonlinear optimization nonlinear programming nonsmooth optimization optimal control optimization proximal point algorithm quadratic programming robust optimization semidefinite programming stochastic optimization stochastic programming trust-region methods unconstrained optimization

    © 2025 Optimization Online • Child Theme of GeneratePress
    For feedback or questions, contact optonline@wid.wisc.edu.