## Mean squared error minimization for inverse moment problems

We consider the problem of approximating the unknown density $u\in L^2(\Omega,\lambda)$ of a measure $\mu$ on $\Omega\subset\R^n$, absolutely continuous with respect to some given reference measure $\lambda$, from the only knowledge of finitely many moments of $\mu$. Given $d\in\N$ and moments of order $d$, we provide a polynomial $p_d$ which minimizes the mean square error … Read more