Tractable continuous approximations for constraint selection via cardinality minimization
Article Download View Tractable continuous approximations for constraint selection via cardinality minimization
Article Download View Tractable continuous approximations for constraint selection via cardinality minimization
This paper studies a statistical learning model where the model coefficients have a pre-determined non-overlapping group sparsity structure. We consider a combination of a loss function and a regularizer to recover the desired group sparsity patterns, which can embrace many existing works. We analyze the stationary solution of the proposed formulation, obtaining a sufficient condition … Read more
This paper addresses supervised learning problems with structured sparsity, where subsets of model coefficients form distinct groups. We introduce a novel log-composite regularizer in a bi-criteria optimization problem together with a loss (e.g., least squares) in order to reconstruct the desired group sparsity structure. We develop an iteratively reweighted algorithm that solves the group LASSO … Read more
This paper studies properties of the d(irectional)-stationary solutions of sparse sample average approximation (SAA) problems involving difference-of-convex (dc) sparsity functions under a deterministic setting. Such properties are investigated with respect to a vector which satisfies a verifiable assumption to relate the empirical SAA problem to the expectation minimization problem defined by an underlying data distribution. … Read more
We introduce a new constraint system for sparse variable selection in statistical learning. Such a system arises when there are logical conditions on the sparsity of certain unknown model parameters that need to be incorporated into their selection process. Formally, extending a cardinality constraint, an affine sparsity constraint (ASC) is defined by a linear inequality … Read more