Error Bound and Isocost Imply Linear Convergence of DCA-based Algorithms to D-stationarity

We consider a class of structured nonsmooth difference-of-convex minimization, which can be written as the difference of two convex functions possibly nonsmooth with the second one in the format of the maximum of a finite convex smooth functions. We propose two extrapolation proximal difference-of-convex based algorithms for potential acceleration to converge to a weak/standard d-stationary … Read more

On the Linear Convergence of Difference-of-convex Algorithms for Nonsmooth DC Programming

In this paper we consider the linear convergence of algorithms for minimizing difference- of-convex functions with convex constraints. We allow nonsmoothness in both of the convex and concave components in the objective function, with a finite max structure in the concave compo- nent. Our focus is on algorithms that compute (weak and standard) d(irectional)-stationary points … Read more

DC Decomposition of Nonconvex Polynomials with Algebraic Techniques

We consider the problem of decomposing a multivariate polynomial as the difference of two convex polynomials. We introduce algebraic techniques which reduce this task to linear, second order cone, and semidefinite programming. This allows us to optimize over subsets of valid difference of convex decompositions (dcds) and find ones that speed up the convex-concave procedure … Read more