Multi-fidelity robust controller design with gradient sampling

Robust controllers that stabilize dynamical systems even under disturbances and noise are often formulated as solutions of nonsmooth, nonconvex optimization problems. While methods such as gradient sampling can handle the nonconvexity and nonsmoothness, the costs of evaluating the objective function may be substantial, making robust control challenging for dynamical systems with high-dimensional state spaces. In … Read more

On Properties of Univariate Max Functions at Local Maximizers

More than three decades ago, Boyd and Balakrishnan established a regularity result for the two-norm of a transfer function at maximizers. Their result extends easily to the statement that the maximum eigenvalue of a univariate real analytic Hermitian matrix family is twice continuously differentiable, with Lipschitz second derivative, at all local maximizers, a property that … Read more

Local Minimizers of the Crouzeix Ratio: A Nonsmooth Optimization Case Study

Given a square matrix $A$ and a polynomial $p$, the Crouzeix ratio is the norm of the polynomial on the field of values of $A$ divided by the 2-norm of the matrix $p(A)$. Crouzeix’s conjecture states that the globally minimal value of the Crouzeix ratio is 0.5, regardless of the matrix order and polynomial degree, … Read more

Finding the strongest stable massless column with a follower load and relocatable concentrated masses

We consider the problem of optimal placement of concentrated masses along a massless elastic column that is clamped at one end and loaded by a nonconservative follower force at the free end. The goal is to find the largest possible interval such that the variation in the loading parameter within this interval preserves stability of … Read more

Behavior of Limited Memory BFGS when Applied to Nonsmooth Functions and their Nesterov Smoothings

The motivation to study the behavior of limited-memory BFGS (L-BFGS) on nonsmooth optimization problems is based on two empirical observations: the widespread success of L-BFGS in solving large-scale smooth optimization problems, and the remarkable effectiveness of the full BFGS method in solving small to medium-sized nonsmooth optimization problems, based on using a gradient, not a … Read more

Partial smoothness of the numerical radius at matrices whose fields of values are disks

Solutions to optimization problems involving the numerical radius often belong to a special class: the set of matrices having field of values a disk centered at the origin. After illustrating this phenomenon with some examples, we illuminate it by studying matrices around which this set of “disk matrices” is a manifold with respect to which … Read more

Analysis of Limited-Memory BFGS on a Class of Nonsmooth Convex Functions

The limited memory BFGS (L-BFGS) method is widely used for large-scale unconstrained optimization, but its behavior on nonsmooth problems has received little attention. L-BFGS can be used with or without “scaling”; the use of scaling is normally recommended. A simple special case, when just one BFGS update is stored and used at every iteration, is … Read more

Gradient Sampling Methods for Nonsmooth Optimization

This paper reviews the gradient sampling methodology for solving nonsmooth, nonconvex optimization problems. An intuitively straightforward gradient sampling algorithm is stated and its convergence properties are summarized. Throughout this discussion, we emphasize the simplicity of gradient sampling as an extension of the steepest descent method for minimizing smooth objectives. We then provide overviews of various … Read more

Analysis of the Gradient Method with an Armijo-Wolfe Line Search on a Class of Nonsmooth Convex Functions

It has long been known that the gradient (steepest descent) method may fail on nonsmooth problems, but the examples that have appeared in the literature are either devised specifically to defeat a gradient or subgradient method with an exact line search or are unstable with respect to perturbation of the initial point. We give an … Read more