Global Search Strategies for Solving Multilinear Least-squares Problems

The multilinear least-squares (MLLS) problem is an extension of the linear least-squares problem. The difference is that a multilinear operator is used in place of a matrix-vector product. The MLLS is typically a large-scale problem characterized by a large number of local minimizers. It originates, for instance, from the design of filter networks. We present … Read more

Approximate spectral factorization for design of efficient sub-filter sequences

A well-known approach to the design of computationally efficient filters is to use spectral factorization, i.e. a decomposition of a filter into a sequence of sub-filters. Due to the sparsity of the sub-filters, the typical processing speedup factor is within the range 1-10 in 2D, and for 3D it achieves 10-100. The design of such … Read more

Monotonicity recovering and accuracy preserving optimization methods for postprocessing finite element solutions

We suggest here a least-change correction to available finite element (FE) solution. This postprocessing procedure is aimed at recovering the monotonicity and some other important properties that may not be exhibited by the FE solution. It is based on solving a monotonic regression problem with some extra constraints. One of them is a linear equality-type … Read more

Optimal placement of communications relay nodes

We consider a constrained optimization problem with mixed integer and real variables. It models optimal placement of communications relay nodes in the presence of obstacles. This problem is widely encountered, for instance, in robotics, where it is required to survey some target located in one point and convey the gathered information back to a base … Read more