Information Basis in Dynamic Robust Optimization

Dynamic robust optimization deals with sequential, multi-stage decisions in the face of uncertain, worst-case scenarios. To manage its complexity and the curse of dimensionality, decision rules simplify the search for an optimal policy. This paper explores a middle ground between two common decision rules: simple but imprecise constant policies, and accurate but less scalable affine … Read more

Adjustability in Robust Linear Optimization

We investigate the concept of adjustability — the difference in objective values between two types of dynamic robust optimization formulations: one where (static) decisions are made before uncertainty realization, and one where uncertainty is resolved before (adjustable) decisions. This difference reflects the value of information and decision timing in optimization under uncertainty, and is related … Read more

Fleet Sizing and Allocation for On-demand Last-Mile Transportation Systems

The last-mile problem refers to the provision of travel service from the nearest public transportation node to home or other destination. Last-Mile Transportation Systems (LMTS), which have recently emerged, provide on-demand shared transportation. In this paper, we investigate the fleet sizing and allocation problem for the on-demand LMTS. Specifically, we consider the perspective of a … Read more

Designing Response Supply Chain Against Bioattacks

Bioattacks, i.e., the intentional release of pathogens or biotoxins against humans to cause serious illness and death, pose a significant threat to public health and safety due to the availability of pathogens worldwide, scale of impact, and short treatment time window. In this paper, we focus on the problem of prepositioning inventory of medical countermeasures … Read more