A Primal-Dual Perspective on Adaptive Robust Linear Optimization

Adaptive robust optimization is a modelling paradigm for multistage optimization under uncertainty where one seeks decisions that minimize the worst-case cost with respect to all possible scenarios in a prescribed uncertainty set. However, optimal policies for adaptive robust optimization problems are difficult to compute. Therefore, one often restricts to the class of affine policies which … Read more

On the Optimality of Affine Policies for Budgeted Uncertainty Sets

In this paper, we study the performance of affine policies for two-stage adjustable robust optimization problem with uncertain right hand side belonging to a budgeted uncertainty set. This is an important class of uncertainty sets widely used in practice where we can specify a budget on the adversarial deviations of the uncertain parameters from the … Read more

Robust Optimal Control with Adjustable Uncertainty Sets

Robust control design for constrained uncertain systems is a well-studied topic. Given a known uncertainty set, the objective is to find a control policy that minimizes a given cost and satisfies the system’s constraints for all possible uncertainty realizations. In this paper, we extend the classical robust control setup by treating the uncertainty sets as … Read more

Multistage Adaptive Robust Optimization for the Unit Commitment Problem

The growing uncertainty associated with the increasing penetration of wind and solar power generation has presented new challenges to the operation of large-scale electric power systems. Motivated by these challenges, we present a multistage adaptive robust optimization model for the most critical daily operational problem of power systems, namely the unit commitment (UC) problem, in … Read more