Decision-making with Side Information: A Causal Transport Robust Approach

We consider stochastic optimization with side information where, prior to decision making, covariate data are available to inform better decisions. In particular, we propose to consider a distributionally robust formulation based on causal transport distance. Compared with divergence and Wasserstein metric, the causal transport distance is better at capturing the information structure revealed from the conditional distribution … Read more

Robust Two-Stage Optimization with Covariate Data

We consider a generalization of two-stage decision problems in which the second-stage decision may be a function of a predictive signal but cannot adapt fully to the realized uncertainty. We will show how such problems can be learned from sample data by considering a family of regularized sample average formulations. Furthermore, our regularized data-driven formulations … Read more

A New Dual-Based Cutting Plane Algorithm for Nonlinear Adjustable Robust Optimization

This paper explores a class of nonlinear Adjustable Robust Optimization (ARO) problems, containing here-and-now and wait-and-see variables, with uncertainty in the objective function and constraints. By applying Fenchel’s duality on the wait-and-see variables, we obtain an equivalent dual reformulation, which is a nonlinear static robust optimization problem. Using the dual formulation, we provide conditions under … Read more

Optimal Robust Policy for Feature-Based Newsvendor

We study policy optimization for the feature-based newsvendor, which seeks an end-to-end policy that renders an explicit mapping from features to ordering decisions. Unlike existing works that restrict the policies to some parametric class which may suffer from sub-optimality (such as affine class) or lack of interpretability (such as neural networks), we aim to optimize … Read more

Adjustability in Robust Linear Optimization

We investigate the concept of adjustability — the difference in objective values between two types of dynamic robust optimization formulations: one where (static) decisions are made before uncertainty realization, and one where uncertainty is resolved before (adjustable) decisions. This difference reflects the value of information and decision timing in optimization under uncertainty, and is related … Read more

Convex Maximization via Adjustable Robust Optimization

Maximizing a convex function over convex constraints is an NP-hard problem in general. We prove that such a problem can be reformulated as an adjustable robust optimization (ARO) problem where each adjustable variable corresponds to a unique constraint of the original problem. We use ARO techniques to obtain approximate solutions to the convex maximization problem. … Read more

A Unified Framework for Adjustable Robust Optimization with Endogenous Uncertainty

This work proposes a framework for multistage adjustable robust optimization that unifies the treatment of three different types of endogenous uncertainty, where decisions, respectively, (i) alter the uncertainty set, (ii) affect the materialization of uncertain parameters, and (iii) determine the time when the true values of uncertain parameters are observed. We provide a systematic analysis … Read more

Adjustable robust treatment-length optimization in radiation therapy

Traditionally, optimization of radiation therapy (RT) treatment plans has been done before the initiation of RT course, using population-wide estimates for patients’ response to therapy. However, recent technological advancements have enabled monitoring individual patient response during the RT course, in the form of biomarkers. Although biomarker data remains subject to substantial uncertainties, information extracted from … Read more

Dual approach for two-stage robust nonlinear optimization

Adjustable robust minimization problems in which the adjustable variables appear in a convex way are difficult to solve. For example, if we substitute linear decision rules for the adjustable variables, then the model becomes convex in the uncertain parameters, whereas for computational tractability we need concavity in the uncertain parameters. In this paper we reformulate … Read more

Robust optimization for models with uncertain SOC and SDP constraints

In this paper we consider uncertain second-order cone (SOC) and semidefinite programming (SDP) constraints with polyhedral uncertainty, which are in general computationally intractable. We propose to reformulate an uncertain SOC or SDP constraint as a set of adjustable robust linear optimization constraints with an ellipsoidal or semidefinite representable uncertainty set, respectively. The resulting adjustable problem … Read more