The Analytics of Robust Satisficing

We propose a new prescriptive analytics model based on robust satisficing that incorporates a prediction model to determine the here-and-now decision that would achieve a target expected reward as well as possible under both risk ambiguity and estimation uncertainty. The reward function of the decision model depends on some observable parameters whose future realizations are … Read more

Vehicle Repositioning under Uncertainty

We consider a general multi-period repositioning problem in vehicle-sharing networks such as bicycle-sharing systems, free-float car-sharing systems, and autonomous mobility-on-demand systems. This problem is subject to uncertainties along multiple dimensions – including demand, travel time, and repositioning duration – and faces several operational constraints such as the service level and cost budget. We propose a … Read more

Joint Pricing and Production: A Fusion of Machine Learning and Robust Optimization

We integrate machine learning with distributionally robust optimization to address a two-period problem for the joint pricing and production of multiple items. First, we generalize the additive demand model to capture both cross-product and cross-period effects as well as the demand dependence across periods. Next, we apply K-means clustering to the demand residual mapping based … Read more