The Analytics of Robust Satisficing

We propose a new prescriptive analytics model based on robust satisficing that incorporates a prediction model to determine the here-and-now decision that would achieve a target expected reward as well as possible under both risk ambiguity and estimation uncertainty. The reward function of the decision model depends on some observable parameters whose future realizations are … Read more

Robust Explainable Prescriptive Analytics

We propose a new robust explainable prescriptive analytics framework that minimizes a risk-based objective function under distributional ambiguity by leveraging the data collected on the past realizations of the uncertain parameters affecting the decision model and the side information that have some predictive power on those uncertainties. The framework solves for an explainable response policy … Read more

Tractable Robust Supervised Learning Models

At the heart of supervised learning is a minimization problem with an objective function that evaluates a set of training data over a loss function that penalizes poor fitting and a regularization function that penalizes over-fitting to the training data. More recently, data-driven robust optimization based learning models provide an intuitive robustness perspective of regularization. … Read more

Globalized Distributionally Robust Counterpart: Model, Reformulation, and Applications

We extend the notion of globalized robustness to consider distributional information beyond the support of the ambiguous probability distribution. We propose the globalized distributionally robust counterpart that disallows any (resp., allows limited) constraint violation for distributions residing (resp., not residing) in the ambiguity set. By varying its inputs, our proposal recovers several existing perceptions of … Read more

Robust Conic Satisficing

In practical optimization problems, we typically model uncertainty as a random variable though its true probability distribution is unobservable to the decision maker. Historical data provides some information of this distribution that we can use to approximately quantify the risk of an evaluation function that depends on both our decision and the uncertainty. This empirical … Read more

Risk Analysis 101 — Robust-Optimization: the elephant in the robust-satisficing room

In 2001, info-gap decision theory re-invented the then 40-year old model of local robustness, known universally as radius of stability (circa 1960). Since then, this model of local robustness has been promoted by info-gap scholars as a reliable tool for the management of a severe uncertainty that is characterized by a vast (e.g. unbounded) uncertainty … Read more