A Newton’s method for the continuous quadratic knapsack problem

We introduce a new efficient method to solve the continuous quadratic knapsack problem. This is a highly structured quadratic program that appears in different contexts. The method converges after O(n) iterations with overall arithmetic complexity O(n²). Numerical experiments show that in practice the method converges in a small number of iterations with overall linear complexity, … Read more

There is no variational characterization of the cycles in the method of periodic projections

The method of periodic projections consists in iterating projections onto $m$ closed convex subsets of a Hilbert space according to a periodic sweeping strategy. In the presence of $m\geq 3$ sets, a long-standing question going back to the 1960s is whether the limit cycles obtained by such a process can be characterized as the minimizers … Read more

Strong asymptotic convergence of evolution equations governed by maximal monotone operators

We consider the Tikhonov-like dynamics $-\dot u(t)\in A(u(t))+\varepsilon(t)u(t)$ where $A$ is a maximal monotone operator and the parameter function $\eps(t)$ tends to 0 for $t\to\infty$ with $\int_0^\infty\eps(t)dt=\infty$. When $A$ is the subdifferential of a closed proper convex function $f$, we establish strong convergence of $u(t)$ towards the least-norm minimizer of $f$. In the general case … Read more