Enhancing explainability of stochastic programming solutions via scenario and recourse reduction

Stochastic programming (SP) is a well-studied framework for modeling optimization problems under uncertainty. However, despite the significant advancements in solving large SP models, they are not widely used in industrial practice, often because SP solutions are difficult to understand and hence not trusted by the user. Unlike deterministic optimization models, SP models generally involve recourse … Read more

Decomposition and Adaptive Sampling for Data-Driven Inverse Linear Optimization

This work addresses inverse linear optimization where the goal is to infer the unknown cost vector of a linear program. Specifically, we consider the data-driven setting in which the available data are noisy observations of optimal solutions that correspond to different instances of the linear program. We introduce a new formulation of the problem that, … Read more