A dynamic programming approach to segmented isotonic regression

This paper proposes a polynomial-time algorithm to construct the monotone stepwise curve that minimizes the sum of squared errors with respect to a given cloud of data points. The fitted curve is also constrained on the maximum number of steps it can be composed of and on the minimum step length. Our algorithm relies on … Read more

On the Complexity of Inverse Mixed Integer Linear Optimization

Inverse optimization is the problem of determining the values of missing input parameters that are closest to given estimates and that will make a given solution optimal. This study is concerned with the relationship of a particular inverse mixed integer linear optimization problem (MILPs) to both the original problem and the separation problem associated with … Read more

Graph Recovery From Incomplete Moment Information

We investigate a class of moment problems, namely recovering a measure supported on the graph of a function from partial knowledge of its moments, as for instance in some problems of optimal transport or density estimation. We show that the sole knowledge of first degree moments of the function, namely linear measurements, is sufficient to … Read more

Decomposition and Adaptive Sampling for Data-Driven Inverse Linear Optimization

This work addresses inverse linear optimization where the goal is to infer the unknown cost vector of a linear program. Specifically, we consider the data-driven setting in which the available data are noisy observations of optimal solutions that correspond to different instances of the linear program. We introduce a new formulation of the problem that, … Read more

Online Convex Optimization Perspective for Learning from Dynamically Revealed Preferences

We study the problem of online learning (OL) from revealed preferences: a learner wishes to learn an agent’s private utility function through observing the agent’s utility-maximizing actions in a changing environment. We adopt an online inverse optimization setup, where the learner observes a stream of agent’s actions in an online fashion and the learning performance … Read more

Inverse Mixed Integer Optimization: Polyhedral Insights and Trust Region Methods

Inverse optimization – determining parameters of an optimization problem that render a given solution optimal – has received increasing attention in recent years. While significant inverse optimization literature exists for convex optimization problems, there have been few advances for discrete problems, despite the ubiquity of applications that fundamentally rely on discrete decision-making. In this paper, … Read more

Dynamic string-averaging CQ-methods for the split feasibility problem with percentage violation constraints arising in radiation therapy treatment planning

In this paper we study a feasibility-seeking problem with percentage violation con- straints. These are additional constraints, that are appended to an existing family of constraints, which single out certain subsets of the existing constraints and declare that up to a speci ed fraction of the number of constraints in each subset is allowed to be … Read more

Objective Selection for Cancer Treatment: An Inverse Optimization Approach

In radiation therapy treatment-plan optimization, selecting a set of clinical objectives that are tractable and parsimonious yet effective is a challenging task. In clinical practice, this is typically done by trial and error based on the treatment planner’s subjective assessment, which often makes the planning process inefficient and inconsistent. We develop the objective selection problem … Read more

Shortfall Risk Models When Information of Loss Function Is Incomplete

Utility-based shortfall risk measure (SR) has received increasing attentions over the past few years for its potential to quantify more effectively the risk of large losses than conditional value at risk. In this paper we consider the case that the true loss function is unavailable either because it is difficult to be identified or the … Read more

Data-Driven Inverse Optimization with Imperfect Information

In data-driven inverse optimization an observer aims to learn the preferences of an agent who solves a parametric optimization problem depending on an exogenous signal. Thus, the observer seeks the agent’s objective function that best explains a historical sequence of signals and corresponding optimal actions. We focus here on situations where the observer has imperfect … Read more