Linear relaxation based branch-and-bound for multi-objective integer programming with warm-starting

In this paper we propose a generic branch-and-bound algorithm for solving multi-objective integer linear programming problems. % In the recent literature, competitive frameworks has been proposed for bi-objective 0-1 problems, and many of these frameworks rely on the use of the linear relaxation to obtain lower bound sets. When increasing the number of objective functions, … Read more

Branch-and-bound and objective branching with three objectives

The recent success of bi-objective Branch-and-Bound (B&B) algorithms heavily relies on the efficient computation of upper and lower bound sets. Besides the classical dominance test, bound sets are used to improve the computational time by imposing inequalities derived from (partial) dominance in the objective space. This process is called objective branching since it is mostly … Read more

Integrating cut-and-solve and semi-Lagrangean based dual ascent for the single-source capacitated facility location problem

This paper describes how the cut-and-solve framework and semi-Lagrangean based dual ascent algorithms can be integrated in two natural ways in order to solve the single source capacitated facility location problem. The first uses the cut-and-solve framework both as a heuristic and as an exact solver for the semi-Lagrangean subproblems. The other uses a semi-Lagrangean … Read more

Bi-objective branch–and–cut algorithms: Applications to the single source capacitated facility location problem

Most real–world optimization problems are of a multi–objective nature, involving objectives which are conflicting and incomparable. Solving a multi–objective optimization problem requires a method which can generate the set of rational compromises between the objectives. In this paper, we propose two distinct bound set based branch–and–cut algorithms for bi–objective combinatorial optimization problems, based on implicitly … Read more