Approximating the Pareto frontier for bi-objective preventive maintenance and workshop scheduling. A Lagrangean lower bounding methodology for evaluating contracting forms

Effective planning of preventive maintenance plays an important role in maximizing the operational readiness of any industrial system. We consider an operating system and a maintenance workshop governed by two stakeholders who collaborate based on a mutual contract: components of the operating system that need maintenance are sent to the maintenance workshop, where necessary maintenance … Read more

Generating balanced workload allocations in hospitals

As pressure on healthcare systems continues to increase, it is becoming more and more important for hospitals to properly manage the high workload levels of their staff. Ensuring a balanced workload allocation between various groups of employees in a hospital has been shown to contribute considerably towards creating sustainable working conditions. However, allocating work to … Read more

A stochastic alternating balance k-means algorithm for fair clustering

In the application of data clustering to human-centric decision-making systems, such as loan applications and advertisement recommendations, the clustering outcome might discriminate against people across different demographic groups, leading to unfairness. A natural conflict occurs between the cost of clustering (in terms of distance to cluster centers) and the balance representation of all demographic groups … Read more

Time-Varying Semidefinite Programs

We study time-varying semidefinite programs (TV-SDPs), which are semidefinite programs whose data (and solutions) are functions of time. Our focus is on the setting where the data varies polynomially with time. We show that under a strict feasibility assumption, restricting the solutions to also be polynomial functions of time does not change the optimal value … Read more

Exact algorithms for bi-objective ring tree problems with reliability measures

We introduce bi-objective models for ring tree network design with a focus on network reliability within telecommunication applications. Our approaches generalize the capacitated ring tree problem (CRTP) which asks for a partially reliable topology that connects customers with different security requirements to a depot node by combined ring and tree graphs. While the CRTP aims … Read more

Bi-objective branch–and–cut algorithms: Applications to the single source capacitated facility location problem

Most real–world optimization problems are of a multi–objective nature, involving objectives which are conflicting and incomparable. Solving a multi–objective optimization problem requires a method which can generate the set of rational compromises between the objectives. In this paper, we propose two distinct bound set based branch–and–cut algorithms for bi–objective combinatorial optimization problems, based on implicitly … Read more

Multi-objective GRASP with path-relinking

In this paper we propose an adaptation of the GRASP metaheuristic to solve multi-objective combinatorial optimization problems. In particular we describe several alternatives to specialize the construction and improvement components of GRASP when two or more objectives are considered. GRASP has been successfully coupled with path-relinking for single-objective optimization. In this paper, we propose different … Read more