A New Self-Dual Embedding Method for Convex Programming

In this paper we introduce a conic optimization formulation for inequality-constrained convex programming, and propose a self-dual embedding model for solving the resulting conic optimization problem. The primal and dual cones in this formulation are characterized by the original constraint functions and their corresponding conjugate functions respectively. Hence they are completely symmetric. This allows for … Read more

New Results on Quadratic Minimization

In this paper we present several new results on minimizing an indefinite quadratic function under quadratic/linear constraints. The emphasis is placed on the case where the constraints are two quadratic inequalities. This formulation is known as {\em the extended trust region subproblem}\/ and the computational complexity of this problem is still unknown. We consider several … Read more

On cones of nonnegative quadratic functions

We derive LMI-characterizations and dual decomposition algorithms for certain matrix cones which are generated by a given set using generalized co-positivity. These matrix cones are in fact cones of non-convex quadratic functions that are nonnegative on a certain domain. As a domain, we consider for instance the intersection of a (upper) level-set of a quadratic … Read more