Bilevel stochastic methods for optimization and machine learning: Bilevel stochastic descent and DARTS

Two-level stochastic optimization formulations have become instrumental in a number of machine learning contexts such as neural architecture search, continual learning, adversarial learning, and hyperparameter tuning. Practical stochastic bilevel optimization problems become challenging in optimization or learning scenarios where the number of variables is high or there are constraints. The goal of this paper is … Read more

A simulation-based optimization approach for the calibration of a discrete event simulation model of an emergency department

Accurate modeling of the patient flow within an Emergency Department (ED) is required by all studies dealing with the increasing and well-known problem of overcrowding. Since Discrete Event Simulation (DES) models are often adopted with the aim of assessing solutions for reducing the impact of this worldwide phenomenon, an accurate estimation of the service time … Read more

Determining the optimal piecewise constant approximation for the Nonhomogeneous Poisson Process rate of Emergency Department patient arrivals

Modeling the arrival process to an Emergency Department (ED) is the first step of all studies dealing with the patient flow within the ED. Many of them focus on the increasing phenomenon of ED overcrowding, which is afflicting hospitals all over the world. Since Discrete Event Simulation models are often adopted with the aim to … Read more