A parallel splitting ALM-based algorithm for separable convex programming

The augmented Lagrangian method (ALM) provides a benchmark for tackling the canonical convex minimization problem with linear constraints. We consider a special case where the objective function is the sum of $m$ individual subfunctions without coupled variables. The recent study reveals that the direct extension of ALM for separable convex programming problems is not necessarily … Read more

A search direction inspired primal-dual method for saddle point problems

The primal-dual hybrid gradient algorithm (PDHG), which is indeed the Arrow-Hurwicz method, has been widely used in image processing areas. However, the convergence of PDHG was established only under some restrictive conditions in the literature, and it is still missing for the case without extra constraints. In this paper, from a perspective of the variational … Read more

Indefinite linearized augmented Lagrangian method for convex programming with linear inequality constraints

The augmented Lagrangian method (ALM) is a benchmark for tackling the convex optimization problem with linear constraints; ALM and its variants for linearly equality-constrained convex minimization models have been well studied in the literatures. However, much less attention has been paid to ALM for efficiently solving the linearly inequality-constrained convex minimization model. In this paper, … Read more