Scenario grouping and decomposition algorithms for chance-constrained programs

A lower bound for a finite-scenario-based chance-constrained program is the quantile value corresponding to the sorted optimal objective values of scenario subproblems. This quantile bound can be improved by grouping subsets of scenarios at the expense of solving larger subproblems. The quality of the bound depends on how the scenarios are grouped. In this paper, … Read more

Parallel Scenario Decomposition of Risk Averse 0-1 Stochastic Programs

In this paper, we extend a recently proposed scenario decomposition algorithm (Ahmed (2013)) for risk-neutral 0-1 stochastic programs to the risk-averse setting. Specifically, we consider risk-averse 0-1 stochastic programs with objective functions based on coherent risk measures. Using a dual representation of a coherent risk measure, we first derive an equivalent minimax reformulation of the … Read more

Decomposition Algorithm for Optimizing Multi-server Appointment Scheduling with Chance Constraints

We schedule appointments with random service durations on multiple servers with operating time limits. We minimize the costs of operating servers and serving appointments, subject to a joint chance constraint limiting the risk of server overtime. Using finite samples of the uncertainty, we formulate the problem as a mixed-integer linear program, and propose a two-stage … Read more

Optimization Methods for Disease Prevention and Epidemic Control

This paper investigates problems of disease prevention and epidemic control (DPEC), in which we optimize two sets of decisions: (i) vaccinating individuals and (ii) closing locations, given respective budgets with the goal of minimizing the expected number of infected individuals after intervention. The spread of diseases is inherently stochastic due to the uncertainty about disease … Read more