Large-Scale Parallel Multibody Dynamics with Frictional Contact on the Graphical Processing Unit

In the context of simulating the frictional contact dynamics of large systems of rigid bodies, this paper reviews a novel method for solving large cone complementarity problems by means of a fixed-point iteration algorithm. The method is an extension of the Gauss-Seidel and Gauss-Jacobimethods with overrelaxation for symmetric convex linear complementarity problems. Convergent under fairly … Read more

On a class of superlinearly convergent polynomial time interior point methods for sufficient LCP

A new class of infeasible interior point methods for solving sufficient linear complementarity problems requiring one matrix factorization and $m$ backsolves at each iteration is proposed and analyzed. The algorithms from this class use a large $(\caln_\infty^-$) neighborhood of an infeasible central path associated with the complementarity problem and an initial positive, but not necessarily … Read more

A Two Stage Stochastic Equilibrium Model for Electricity Markets with Two Way Contracts

This paper investigates generators’ strategic behaviors in contract signing in the forward market and power transaction in the electricity spot market. A stochastic equilibrium program with equilibrium constraints (SEPEC) model is proposed to characterize the interaction of generators’ competition in the two markets. The model is an extension of a similar model proposed by Gans, … Read more

Fischer-Burmeister Complementarity Function on Euclidean Jordan Algebras

Recently, Gowda et al. [10] established the Fischer-Burmeister (FB) complementarity function (C-function) on Euclidean Jordan algebras. In this paper, we prove that FB C-function as well as the derivatives of the squared norm of FB C-function are Lipschitz continuous. CitationResearch Report CORR 2007-17, Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada, November … Read more

An iterative approach for cone complementarity problems for nonsmooth multibody dynamics

Aiming at a fast and robust simulation of large multibody systems with contacts and friction, this work presents a novel method for solving large cone complementarity problems by means of a fixed-point iteration. The method is an extension of the Gauss-Seidel and Gauss-Jacobi method with overrelaxation for symmetric convex linear complementarity problems. The method is … Read more

An Algorithm for the Fast Solution of Linear Complementarity Problems

This paper studies algorithms for the solution of mixed symmetric linear complementarity problems. The goal is to compute fast and approximate solutions of medium to large sized problems, such as those arising in computer game simulations and American option pricing. The paper proposes an improvement of a method described by Kocvara and Zowe that combines … Read more

Monotonicity of L”{o}wner Operators and Its Applications to Symmetric Cone Complementarity Problems

This paper focuses on monotone L\”{o}wner operators in Euclidean Jordan algebras and their applications to the symmetric cone complementarity problem (SCCP). We prove necessary and sufficient conditions for locally Lipschitz L\”{o}wner operators to be monotone, strictly monotone and strongly monotone. We also study the relationship between monotonicity and operator-monotonicity of L\”{o}wner operators. As a by-product … Read more

The Variational Inequality Approach for Solving Spatial Auction Problems with Joint Constraints

We consider a problem of managing a system of spatially distributed markets under capacity and balance constraints and show that solutions of a variational inequality enjoy auction principle properties implicitly. This enables us to develop efficient tools both for derivation of existence and uniqueness results and for creation of solution methods. CitationKazan University, Kazan, March … Read more

Using exact penalties to derive a new equation reformulation of KKT systems associated to variational inequalities

In this paper, we present a new reformulation of the KKT system associated to a variational inequality as a semismooth equation. The reformulation is derived from the concept of differentiable exact penalties for nonlinear programming. The best results are presented for nonlinear complementarity problems, where simple, verifiable, conditions ensure that the penalty is exact. We … Read more

On the Global Solution of Linear Programs with Linear Complementarity Constraints

This paper presents a parameter-free integer-programming based algorithm for the global resolution of a linear program with linear complementarity constraints (LPEC). The cornerstone of the algorithm is a minimax integer program formulation that characterizes and provides certificates for the three outcomes—infeasibility, unboundedness, or solvability—of an LPEC. An extreme point/ray generation scheme in the spirit of … Read more