The Variational Inequality Approach for Solving Spatial Auction Problems with Joint Constraints

We consider a problem of managing a system of spatially distributed markets under capacity and balance constraints and show that solutions of a variational inequality enjoy auction principle properties implicitly. This enables us to develop efficient tools both for derivation of existence and uniqueness results and for creation of solution methods. Citation Kazan University, Kazan, … Read more

Using exact penalties to derive a new equation reformulation of KKT systems associated to variational inequalities

In this paper, we present a new reformulation of the KKT system associated to a variational inequality as a semismooth equation. The reformulation is derived from the concept of differentiable exact penalties for nonlinear programming. The best results are presented for nonlinear complementarity problems, where simple, verifiable, conditions ensure that the penalty is exact. We … Read more

On the Global Solution of Linear Programs with Linear Complementarity Constraints

This paper presents a parameter-free integer-programming based algorithm for the global resolution of a linear program with linear complementarity constraints (LPEC). The cornerstone of the algorithm is a minimax integer program formulation that characterizes and provides certificates for the three outcomes—infeasibility, unboundedness, or solvability—of an LPEC. An extreme point/ray generation scheme in the spirit of … Read more

CONVERGENCE OF A CLASS OF SEMI-IMPLICIT TIME-STEPPING SCHEMES FOR NONSMOOTH RIGID MULTIBODY DYNAMICS

In this work we present a framework for the convergence analysis in a measure differential inclusion sense of a class of time-stepping schemes for multibody dynamics with contacts, joints, and friction. This class of methods solves one linear complementarity problem per step and contains the semi-implicit Euler method, as well as trapezoidallike methods for which … Read more

Primal-dual affine scaling interior point methods for linear complementarity problems

A first order affine scaling method and two $m$th order affine scaling methods for solving monotone linear complementarity problems (LCP) are presented. All three methods produce iterates in a wide neighborhood of the central path. The first order method has $O(nL^2(\log nL^2)(\log\log nL^2))$ iteration complexity. If the LCP admits a strict complementary solution then both … Read more

Multiplier convergence in trust-region methods with application to convergence of decomposition methods for MPECs

We study piecewise decomposition methods for mathematical programs with equilibrium constraints (MPECs) for which all constraint functions are linear. At each iteration of a decomposition method, one step of a nonlinear programming scheme is applied to one piece of the MPEC to obtain the next iterate. Our goal is to understand global convergence to B-stationary … Read more

A Path to the Arrow-Debreu Competitive Market Equilibrium

We present polynomial-time interior-point algorithms for solving the Fisher and Arrow-Debreu competitive market equilibrium problems with linear utilities and $n$ players. Both of them have the arithmetic operation complexity bound of $O(n^4\log(1/\epsilon))$ for computing an $\epsilon$-equilibrium solution. If the problem data are rational numbers and their bit-length is $L$, then the bound to generate an … Read more

A Note on Exchange Market Equilibria with Leontief’s Utility: Freedom of Pricing Leads to Rationality

We extend the analysis of [27] to handling more general utility functions: piece-wise linear functions, which include Leontief’s utility. We show that the problem reduces to the general analytic center model discussed in [27]. Thus, the same linear programming complexity bound applies to approximating the Fisher equilibrium problem with these utilities. More importantly, we show … Read more

An Accelerated Newton Method for Equations with Semismooth Jacobians and Nonlinear Complementarity Problems: Extended Version

We discuss local convergence of Newton’s method to a singular solution $x^*$ of the nonlinear equations $F(x) = 0$, for $F:\R^n \rightarrow \R^n$. It is shown that an existing proof of Griewank, concerning linear convergence to a singular solution $x^*$ from a starlike domain around $x^*$ for $F$ twice Lipschitz continuously differentiable and $x^*$ satisfying … Read more

Corrector-predictor methods for sufficient linear complementarity problems in a wide neighborhood of the central path

Corrector-predictor methods for sufficient linear complementarity problems in a wide neighborhood of the central path Citation Technical Report UMBC, TR2006-22, January 2005, Revised: March 2006. Article Download View Corrector-predictor methods for sufficient linear complementarity problems in a wide neighborhood of the central path