Dual descent ALM and ADMM
Classical primal-dual algorithms attempt to solve $\max_{\mu}\min_{x} \mathcal{L}(x,\mu)$ by alternatively minimizing over the primal variable $x$ through primal descent and maximizing the dual variable $\mu$ through dual ascent. However, when $\mathcal{L}(x,\mu)$ is highly nonconvex with complex constraints in $x$, the minimization over $x$ may not achieve global optimality, and hence the dual ascent step loses … Read more