Quadratic Optimization Through the Lens of Adjustable Robust Optimization

Quadratic optimization (QO) has been studied extensively in the literature due to its applicability in many practical problems. While practical, it is known that QO problems are generally NP-hard. So, researchers developed many approximation methods to find good solutions. In this paper, we analyze QO problems using robust optimization techniques. To this end, we first … Read more

On Tractable Convex Relaxations of Standard Quadratic Optimization Problems under Sparsity Constraints

Standard quadratic optimization problems (StQPs) provide a versatile modelling tool in various applications. In this paper, we consider StQPs with a hard sparsity constraint, referred to as sparse StQPs. We focus on various tractable convex relaxations of sparse StQPs arising from a mixed-binary quadratic formulation, namely, the linear optimization relaxation given by the reformulation-linearization technique, … Read more

A novel algorithm for a broad class of nonconvex optimization problems

In this paper, we propose a new global optimization approach for solving nonconvex optimization problems in which the nonconvex components are sums of products of convex functions. A broad class of nonconvex problems can be written in this way, such as concave minimization problems, difference of convex problems, and fractional optimization problems. Our approach exploits … Read more

Polyhedral Properties of RLT Relaxations of Nonconvex Quadratic Programs and Their Implications on Exact Relaxations

We study linear programming relaxations of nonconvex quadratic programs given by the reformulation-linearization technique (RLT), referred to as RLT relaxations. We investigate the relations between the polyhedral properties of the feasible regions of a quadratic program and its RLT relaxation. We establish various connections between recession directions, boundedness, and vertices of the two feasible regions. … Read more

On Exact and Inexact RLT and SDP-RLT Relaxations of Quadratic Programs with Box Constraints

Quadratic programs with box constraints involve minimizing a possibly nonconvex quadratic function subject to lower and upper bounds on each variable. This is a well-known NP-hard problem that frequently arises in various applications. We focus on two convex relaxations, namely the RLT (Reformulation-Linearization Technique) relaxation and the SDP-RLT relaxation obtained by adding semidefinite constraints to … Read more

An extension of the Reformulation-Linearization Technique to nonlinear optimization

We introduce a novel Reformulation-Perspectification Technique (RPT) to obtain convex approximations of nonconvex continuous optimization problems. RPT consists of two steps, those are, a reformulation step and a perspectification step. The reformulation step generates redundant nonconvex constraints from pairwise multiplication of the existing constraints. The perspectification step then convexifies the nonconvex components by using perspective … Read more

Polyhedral Analysis of Symmetric Multilinear Polynomials over Box Constraints

It is well-known that the convex and concave envelope of a multilinear polynomial over a box are polyhedral functions. Exponential-sized extended and projected formulations for these envelopes are also known. We consider the convexification question for multilinear polynomials that are symmetric with respect to permutations of variables. Such a permutation-invariant structure naturally implies a quadratic-sized … Read more

A Reformulation-Linearization Technique for Optimization over Simplices

We study non-convex optimization problems over simplices. We show that for a large class of objective functions, the convex approximation obtained from the Reformulation-Linearization Technique (RLT) admits optimal solutions that exhibit a sparsity pattern. This characteristic of the optimal solutions allows us to conclude that (i) a linear matrix inequality constraint, which is often added … Read more

A Primal-Dual Perspective on Adaptive Robust Linear Optimization

Adaptive robust optimization is a modelling paradigm for multistage optimization under uncertainty where one seeks decisions that minimize the worst-case cost with respect to all possible scenarios in a prescribed uncertainty set. However, optimal policies for adaptive robust optimization problems are difficult to compute. Therefore, one often restricts to the class of affine policies which … Read more

Disjoint Bilinear Optimization: A Two-Stage Robust Optimization Perspective

In this paper, we focus on a subclass of quadratic optimization problems, that is, disjoint bilinear optimization problems. We first show that disjoint bilinear optimization problems can be cast as two-stage robust linear optimization problems with fixed-recourse and right-hand-side uncertainty, which enables us to apply robust optimization techniques to solve the resulting problems. To this … Read more