An extension of the Reformulation-Linearization Technique to nonlinear optimization

We introduce a novel Reformulation-Perspectification Technique (RPT) to obtain convex approximations of nonconvex continuous optimization problems. RPT consists of two steps, those are, a reformulation step and a perspectification step. The reformulation step generates redundant nonconvex constraints from pairwise multiplication of the existing constraints. The perspectification step then convexifies the nonconvex components by using perspective … Read more

Polyhedral Analysis of Symmetric Multilinear Polynomials over Box Constraints

It is well-known that the convex and concave envelope of a multilinear polynomial over a box are polyhedral functions. Exponential-sized extended and projected formulations for these envelopes are also known. We consider the convexification question for multilinear polynomials that are symmetric with respect to permutations of variables. Such a permutation-invariant structure naturally implies a quadratic-sized … Read more

A Reformulation-Linearization Technique for Optimization over Simplices

We study non-convex optimization problems over simplices. We show that for a large class of objective functions, the convex approximation obtained from the Reformulation-Linearization Technique (RLT) admits optimal solutions that exhibit a sparsity pattern. This characteristic of the optimal solutions allows us to conclude that (i) a linear matrix inequality constraint, which is often added … Read more

A Primal-Dual Perspective on Adaptive Robust Linear Optimization

Adaptive robust optimization is a modelling paradigm for multistage optimization under uncertainty where one seeks decisions that minimize the worst-case cost with respect to all possible scenarios in a prescribed uncertainty set. However, optimal policies for adaptive robust optimization problems are difficult to compute. Therefore, one often restricts to the class of affine policies which … Read more

Disjoint Bilinear Optimization: A Two-Stage Robust Optimization Perspective

In this paper, we focus on a subclass of quadratic optimization problems, that is, disjoint bilinear optimization problems. We first show that disjoint bilinear optimization problems can be cast as two-stage robust linear optimization problems with fixed-recourse and right-hand-side uncertainty, which enables us to apply robust optimization techniques to solve the resulting problems. To this … Read more

Lower Bounds for the Quadratic Minimum Spanning Tree Problem Based on Reduced Cost Computation

The Minimum Spanning Tree Problem (MSTP) is one of the most known combinatorial optimization problems. It concerns the determination of a minimum edge-cost subgraph spanning all the vertices of a given connected graph. The Quadratic Minimum Spanning Tree Problem (QMSTP) is a variant of the MST whose cost considers also the interaction between every pair … Read more

A Tight Lower Bound for the Adjacent Quadratic Assignment Problem

In this paper we address the Adjacent Quadratic Assignment Problem (AQAP) which is a variant of the QAP where the cost coefficient matrix has a particular structure. Motivated by strong lower bounds obtained by applying Reformulation Linearization Technique (RLT) to the classical QAP, we propose two special RLT representations for the problem. The first is … Read more

Symmetry in RLT cuts for the quadratic assignment and standard quadratic optimization problems

The reformulation-linearization technique (RLT), introduced in [W.P. Adams, H.D. Sherali, A tight linearization and an algorithm for zero-one quadratic programming problems, Management Science, 32(10):1274–1290, 1986], provides a way to compute linear programming bounds on the optimal values of NP-hard combinatorial optimization problems. In this paper we show that, in the presence of suitable algebraic symmetry … Read more

Branch and cut algorithms for detecting critical nodes in undirected graphs

In this paper we deal with the critical node problem, where a given number of nodes has to be removed from an undirected graph in order to maximize the disconnections between the node pairs of the graph. We propose an integer linear programming model with a non-polynomial number of constraints but whose linear relaxation can … Read more

On convex relaxations for quadratically constrained quadratic programming

We consider convex relaxations for the problem of minimizing a (possibly nonconvex) quadratic objective subject to linear and (possibly nonconvex) quadratic constraints. Let F denote the feasible region for the linear constraints. We first show that replacing the quadratic objective and constraint functions with their convex lower envelopes on F is dominated by an alternative … Read more