Pareto-optimal trees and Pareto forest: a bi-objective optimization model for binary classification

As inherently transparent models, classification trees play a central role in interpretable machine learning by providing easily traceable decision paths that allow users to understand how input features contribute to specific predictions. In this work, we introduce a new class of interpretable binary classification models, named Pareto-optimal trees, which aim at combining the complementary strengths … Read more

Multi-group Support Vector Machines with measurement costs: a biobjective approach

Support Vector Machine has shown to have good performance in many practical classification settings. In this paper we propose, for multi-group classification, a biobjective optimization model in which we consider not only the generalization ability (modelled through the margin maximization), but also costs associated with the features. This cost is not limited to an economical … Read more