A Semidefinite Hierarchy for Containment of Spectrahedra

A spectrahedron is the positivity region of a linear matrix pencil, thus defining the feasible set of a semidefinite program. We propose and study a hierarchy of sufficient semidefinite conditions to certify the containment of a spectrahedron in another one. This approach comes from applying a moment relaxation to a suitable polynomial optimization formulation. The … Read more

Containment problems for polytopes and spectrahedra

We study the computational question whether a given polytope or spectrahedron $S_A$ (as given by the positive semidefiniteness region of a linear matrix pencil $A(x)$) is contained in another one $S_B$. First we classify the computational complexity, extending results on the polytope/poly\-tope-case by Gritzmann and Klee to the polytope/spectrahedron-case. For various restricted containment problems, NP-hardness … Read more