Solving low-rank semidefinite programs via manifold optimization

We propose a manifold optimization approach to solve linear semidefinite programs (SDP) with low-rank solutions. This approach incorporates the augmented Lagrangian method and the Burer-Monteiro factorization, and features the adaptive strategies for updating the factorization size and the penalty parameter. We prove that the present algorithm can solve SDPs to global optimality, despite of the … Read more

A Semidefinite Hierarchy for Containment of Spectrahedra

A spectrahedron is the positivity region of a linear matrix pencil, thus defining the feasible set of a semidefinite program. We propose and study a hierarchy of sufficient semidefinite conditions to certify the containment of a spectrahedron in another one. This approach comes from applying a moment relaxation to a suitable polynomial optimization formulation. The … Read more

Multivariate exponential integral approximations: a moment approach

We propose a method to approximate a class of exponential multivariate integrals using moment relaxations. Using this approach, both lower and upper bounds of the integrals are obtained and we show that these bound values asymptotically converge to the real value of the integrals when the moment degree r increases. We further demonstrate the method … Read more

Optimal data fitting: a moment approach

We propose a moment relaxation for two problems, the separation and covering problem with semi-algebraic sets generated by a polynomial of degree d. We show that (a) the optimal value of the relaxation finitely converges to the optimal value of the original problem, when the moment order r increases and (b) there exist probability measures … Read more