The Decentralized Trust-Region Method with Second-Order Approximations

This paper presents a novel decentralized trust-region framework that systematically incorporates second-order information to solve general nonlinear optimization problems in multi-agent networks. Our approach constructs local quadratic models that simultaneously capture objective curvature and enforce consensus through penalty terms, while supporting multiple Hessian approximation strategies including exact Hessians, limited-memory quasi-Newton methods, diagonal preconditioners, and matrix-free … Read more

Decentralized Failure-Tolerant Optimization of Electric Vehicle Charging

We present a decentralized failure-tolerant algorithm for optimizing electric vehicle (EV) charging, using charging stations as computing agents. The algorithm is based on the alternating direction method of multipliers (ADMM) and it has the following features: (i) It handles capacity, peak demand, and ancillary services coupling constraints. (ii) It does not require a central agent … Read more