A Dynamic Strategic Plan for Transition to Campus-Scale Clean Electricity Using Multi-Stage Stochastic Programming

The transition to clean energy systems at large-scale campuses is a critical step toward achieving global decarbonization goals. However, this transition poses significant challenges, including substantial capital requirements, technological uncertainties, and the operational complexities of integrating renewable energy technologies. This study presents a dynamic strategic planning framework for campus-scale clean electricity transitions, utilizing a multi-stage … Read more

Alternating Methods for Large-Scale AC Optimal Power Flow with Unit Commitment

Security-constrained unit commitment with alternating current optimal power flow (SCUC-ACOPF) is a central problem in power grid operations that optimizes commitment and dispatch of generators under a physically accurate power transmission model while encouraging robustness against component failures.  SCUC-ACOPF requires solving large-scale problems that involve multiple time periods and networks with thousands of buses within … Read more

Global Optimization of Gas Transportation and Storage: Convex Hull Characterizations and Relaxations

Gas transportation and storage has become one of the most relevant and important optimization problems in energy systems. This problem inherently includes highly nonlinear and nonconvex aspects due to gas physics, and discrete aspects due to the control decisions of active network elements. Obtaining even locally optimal solutions for this problem presents significant mathematical and … Read more

Climate-Resilient Nodal Power System Expansion Planning for a Realistic California Test Case

Climate change is increasingly impacting power system operations, not only through more frequent extreme weather events but also through shifts in routine weather patterns. Factors such as increased temperatures, droughts, changing wind patterns, and solar irradiance shifts can impact both power system production and transmission and electric load. The current power system was not designed … Read more

Computing Counterfactual Explanations for Linear Optimization: A New Class of Bilevel Models and a Tailored Penalty Alternating Direction Method

Explainable artificial intelligence is one of the most important trends in modern machine-learning research. The idea is to explain the outcome of a model by presenting a certain change in the input of the model so that the outcome changes significantly. In this paper, we study this question for linear optimization problems as an automated … Read more

Polynomial-Time Algorithms for Setting Tight Big-M Coefficients in Transmission Expansion Planning with Disconnected Buses

The increasing penetration of renewable energy into power systems necessitates the development of effective methodologies to integrate initially disconnected generation sources into the grid. This paper introduces the Longest Shortest-Path-Connection (LSPC) algorithm, a graph-based method to enhance the mixed-integer linear programming disjunctive formulation of Transmission Expansion Planning (TEP) using valid inequalities (VIs). Traditional approaches for … Read more

A Dynamic Strategic Plan for the Transition to a Clean Bus Fleet using Multi-Stage Stochastic Programming with a Case Study in Istanbul

In recent years, the transition to clean bus fleets has accelerated. Although this transition might bring environmental and economic benefits, it requires a long-term strategic plan due to the large investment costs involved. This paper proposes a multi-stage stochastic program to optimize strategic plans for the clean bus fleet transition that explicitly considers the uncertainty … Read more

Estimating the Unobservable Components of Electricity Demand Response with Inverse Optimization

Understanding and predicting the electricity demand responses to prices are critical activities for system operators, retailers, and regulators. While conventional machine learning and time series analyses have been adequate for the routine demand patterns that have adapted only slowly over many years, the emergence of active consumers with flexible assets such as solar-plus-storage systems, and … Read more

Optimizing the lead time of operational flexibility trading from distributed industrial energy systems in future energy and flexibility markets

To meet the challenges of increasing volatile and distributed renewable energy generation in the electric grid, local flexibility and energy markets are currently investigated. These markets aim to encourage prosumers to trade their available flexible power locally, to be used if a grid congestion is being predicted. The markets are emerging, but the characterizing parameter … Read more

BattOpt: Optimal Facility Planning for Electric Vehicle Battery Recycling

The electric vehicle (EV) battery supply chain will face challenges in sourcing scarce, expensive minerals required for manufacturing and in disposing of hazardous retired batteries. Integrating recycling technology into the supply chain has the potential to alleviate these issues; however, players in the battery market must design investment plans for recycling facilities. In this paper, … Read more