Adjustable Robust Nonlinear Network Design under Demand Uncertainties

We study network design problems for nonlinear and nonconvex flow models under demand uncertainties. To this end, we apply the concept of adjustable robust optimization to compute a network design that admits a feasible transport for all, possibly infinitely many, demand scenarios within a given uncertainty set. For solving the corresponding adjustable robust mixed-integer nonlinear … Read more

Frequency regulation with storage: On losses and profits

Low-carbon societies will need to store vast amounts of electricity to balance intermittent generation from wind and solar energy, for example, through frequency regulation. Here, we derive an analytical solution to the decision-making problem of storage operators who sell frequency regulation power to grid operators and trade electricity on day-ahead markets. Mathematically, we treat future … Read more

Accurate and Warm-Startable Linear Cutting-Plane Relaxations for ACOPF

We present a linear cutting-plane relaxation approach that rapidly proves tight lower bounds for the Alternating Current Optimal Power Flow Problem (ACOPF). Our method leverages outer-envelope linear cuts for well-known second-order cone relaxations for ACOPF along with modern cut management techniques. These techniques prove effective on a broad family of ACOPF instances, including the largest … Read more

Hierarchically constrained multi-fidelity blackbox optimization

This work introduces a novel multi-fidelity blackbox optimization algorithm designed to alleviate the resource-intensive task of evaluating infeasible points. This algorithm is an intermediary component bridging a direct search solver and a blackbox, resulting in reduced computation time per evaluation, all while preserving the efficiency and convergence properties of the chosen solver. This is made … Read more

Incentivizing Investment and Reliability: A Study on Electricity Capacity Markets

The capacity market, a marketplace to exchange available generation capacity for electricity production, provides a major revenue stream for generators and is adopted in several U.S. regions. A subject of ongoing debate, the capacity market is viewed by its proponents as a crucial mechanism to ensure system reliability, while critics highlight its drawbacks such as … Read more

On a Tractable Single-Level Reformulation of a Multilevel Model of the European Entry-Exit Gas Market with Market Power

We propose a framework that allows to quantitatively analyze the interplay of the different agents involved in gas trade and transport in the context of the European entry-exit system. While previous contributions focus on the case of perfectly competitive buyers and sellers of gas, our novel framework considers the mathematically more challenging case of a … Read more

Sequential Pricing of Electricity

This paper investigates the design and analysis of price formation in wholesale electricity markets given variability, uncertainty, non-convexity, and intertemporal operating constraints. The paper’s primary goal is to develop a framework to assess the many resource participation models, reserve product definitions, and enhanced pricing methods that have arisen in U.S. systems, especially in the context … Read more

Optimization and Simulation for the Daily Operation of Renewable Energy Communities

Renewable Energy Communities (RECs) are an important building block for the decarbonization of the energy sector. The concept of RECs allows individual consumers to join together in local communities to generate, store, consume and sell renewable energy. A major benefit of this collective approach is a better match between supply and demand profiles, and thus, … Read more

A Multicut Approach to Compute Upper Bounds for Risk-Averse SDDP

Stochastic Dual Dynamic Programming (SDDP) is a widely used and fundamental algorithm for solving multistage stochastic optimization problems. Although SDDP has been frequently applied to solve risk-averse models with the Conditional Value-at-Risk (CVaR), it is known that the estimation of upper bounds is a methodological challenge, and many methods are computationally intensive. In practice, this … Read more

A Polynomial Algorithm for the Lossless Battery Charging Problem

This study presents a polynomial time algorithm to solve the lossless battery charging problem. In this problem the optimal charging and discharging schedules are chosen to maximize total profit. Traditional solution approaches have relied on either approximations or exponential algorithms. By studying the optimality conditions of this problem, we are able to reduce it to … Read more