Data-Driven Contextual Optimization with Gaussian Mixtures: Flow-Based Generalization, Robust Models, and Multistage Extensions

Contextual optimization enhances decision quality by leveraging side information to improve predictions of uncertain parameters. However, existing approaches face significant challenges when dealing with multimodal or mixtures of distributions. The inherent complexity of such structures often precludes an explicit functional relationship between the contextual information and the uncertain parameters, limiting the direct applicability of parametric … Read more

Learning a Mixture of Gaussians via Mixed Integer Optimization

We consider the problem of estimating the parameters of a multivariate Gaussian mixture model (GMM) given access to $n$ samples $\x_1,\x_2,\ldots ,\x_n \in\mathbb{R}^d$ that are believed to have come from a mixture of multiple subpopulations. State-of-the-art algorithms used to recover these parameters use heuristics to either maximize the log-likelihood of the sample or try to … Read more