Exact SDP relaxations for a class of quadratic programs with finite and infinite quadratic constraints

We investigate exact semidefinite programming (SDP) relaxations for the problem of minimizing a nonconvex quadratic objective function over a feasible region defined by both finitely and infinitely many nonconvex quadratic inequality constraints (semi-infinite QCQPs). Specifically, we present two sufficient conditions on the feasible region under which the QCQP, with any quadratic objective function over the … Read more

Further Development in Convex Conic Reformulation of Geometric Nonconvex Conic Optimization Problems

A geometric nonconvex conic optimization problem (COP) was recently proposed by Kim, Kojima and Toh asa unified framework for convex conic reformulation of a class of quadratic optimization problems and polynomial optimization problems. The nonconvex COP minimizes a linear function over the intersection of a nonconvex cone K, a convex subcone J of the convex … Read more