An easily computable upper bound on the Hoffman constant for homogeneous inequality systems

\(\)Let $A\in \mathbb{R}^{m\times n}\setminus \{0\}$ and $P:=\{x:Ax\le 0\}$. This paper provides a procedure to compute an upper bound on the following {\em homogeneous Hoffman constant} \[ H_0(A) := \sup_{u\in \mathbb{R}^n \setminus P} \frac{\text{dist}(u,P)}{\text{dist}(Au, \mathbb{R}^m_-)}. \] In sharp contrast to the intractability of computing more general Hoffman constants, the procedure described in this paper is entirely … Read more

Stability of error bounds for convex constraint systems in Banach spaces

This paper studies stability of error bounds for convex constraint systems in Banach spaces. We show that certain known sufficient conditions for local and global error bounds actually ensure error bounds for the family of functions being in a sense small perturbations of the given one. A single inequality as well as semi-infinite constraint systems … Read more

Stability of error bounds for semi-infinite convex constraint systems

In this paper, we are concerned with the stability of the error bounds for semi-infinite convex constraint systems. Roughly speaking, the error bound of a system of inequalities is said to be stable if all its “small” perturbations admit a (local or global) error bound. We first establish subdifferential characterizations of the stability of error … Read more