Error Bound and Isocost Imply Linear Convergence of DCA-based Algorithms to D-stationarity

We consider a class of structured nonsmooth difference-of-convex minimization, which can be written as the difference of two convex functions possibly nonsmooth with the second one in the format of the maximum of a finite convex smooth functions. We propose two extrapolation proximal difference-of-convex based algorithms for potential acceleration to converge to a weak/standard d-stationary … Read more

A unified analysis of descent sequences in weakly convex optimization, including convergence rates for bundle methods

We present a framework for analyzing convergence and local rates of convergence of a class of descent algorithms, assuming the objective function is weakly convex. The framework is general, in the sense that it combines the possibility of explicit iterations (based on the gradient or a subgradient at the current iterate), implicit iterations (using a … Read more

Exact computation of an error bound for a generalized linear complementarity problem with unique solution

This paper considers a generalized form of the standard linear complementarity problem with unique solution and provides a more precise expression of an upper error bound discovered by Chen and Xiang in 2006. This expression has at least two advantages. It makes possible the exact computation of the error bound factor and it provides a … Read more

Optimal error bounds in the absence of constraint qualifications with applications to the p-cones and beyond

We prove tight Hölderian error bounds for all p-cones. Surprisingly, the exponents differ in several ways from those that have been previously conjectured; moreover, they illuminate p-cones as a curious example of a class of objects that possess properties in 3 dimensions that they do not in 4 or more. Using our error bounds, we … Read more

Utility Preference Robust Optimization with Moment-Type Information Structure

Utility preference robust optimization (PRO) models are recently proposed to deal with decision making problems where the decision maker’s true utility function is unknown and the optimal decision is based on the worst case utility function from an ambiguity set of utility functions. In this paper, we consider the case where the ambiguity set is … Read more

Error bounds, facial residual functions and applications to the exponential cone

We construct a general framework for deriving error bounds for conic feasibility problems. In particular, our approach allows one to work with cones that fail to be amenable or even to have computable projections, two previously challenging barriers. For the purpose, we first show how error bounds may be constructed using objects called one-step facial … Read more

Complementary problems with polynomial data

Given polynomial maps $f, g \colon \mathbb{R}^n \to \mathbb{R}^n,$ we consider the {\em polynomial complementary problem} of finding a vector $x \in \mathbb{R}^n$ such that \begin{equation*} f(x) \ \ge \ 0, \quad g(x) \ \ge \ 0, \quad \textrm{ and } \quad \langle f(x), g(x) \rangle \ = \ 0. \end{equation*} In this paper, we … Read more

Error Bounds and Singularity Degree in Semidefinite Programming

In semidefinite programming a proposed optimal solution may be quite poor in spite of having sufficiently small residual in the optimality conditions. This issue may be framed in terms of the discrepancy between forward error (the unmeasurable `true error’) and backward error (the measurable violation of optimality conditions). In his seminal work, Sturm provided an … Read more

On the Linear Convergence of Difference-of-convex Algorithms for Nonsmooth DC Programming

In this paper we consider the linear convergence of algorithms for minimizing difference- of-convex functions with convex constraints. We allow nonsmoothness in both of the convex and concave components in the objective function, with a finite max structure in the concave compo- nent. Our focus is on algorithms that compute (weak and standard) d(irectional)-stationary points … Read more

Amenable cones: error bounds without constraint qualifications

We provide a framework for obtaining error bounds for linear conic problems without assuming constraint qualifications or regularity conditions. The key aspects of our approach are the notions of amenable cones and facial residual functions. For amenable cones, it is shown that error bounds can be expressed as a composition of facial residual functions. The … Read more