The Slater Conundrum: Duality and Pricing in Infinite Dimensional Optimization

Duality theory is pervasive in finite dimensional optimization. There is growing interest in solving infinite-dimensional optimization problems and hence a corresponding interest in duality theory in infinite dimensions. Unfortunately, many of the intuitions and interpretations common to finite dimensions do not extend to infinite dimensions. In finite dimensions, a dual solution is represented by a … Read more

Solving Infinite-dimensional Optimization Problems by Polynomial Approximation

We solve a class of convex infinite-dimensional optimization problems using a numerical approximation method that does not rely on discretization. Instead, we restrict the decision variable to a sequence of finite-dimensional linear subspaces of the original infinite-dimensional space and solve the corresponding finite-dimensional problems in a efficient way using structured convex optimization techniques. We prove … Read more

Primal-dual interior point methods for PDE-constrained optimization

This paper provides a detailed analysis of a primal-dual interior-point method for PDE-constrained optimization. Considered are optimal control problems with control constraints in $L^p$. It is shown that the developed primal-dual interior-point method converges globally and locally superlinearly. Not only the easier $L^\infty$-setting is analyzed, but also a more involved $L^q$-analysis, $q

Extreme Point Solutions for Infinite Network Flow Problems

We study capacitated network flow problems with supplies and demands defined on a countably infinite collection of nodes having finite degree. This class of network flow models includes, for example, all infinite horizon deterministic dynamic programs with finite action sets since these are equivalent to the problem of finding a shortest infinite path in an … Read more