A Simple Adaptive Proximal Gradient Method for Nonconvex Optimization

Consider composite nonconvex optimization problems where the objective function consists of a smooth nonconvex term (with Lipschitz-continuous gradient) and a convex (possibly nonsmooth) term. Existing parameter-free methods for such problems often rely on complex multi-loop structures, require line searches, or depend on restrictive assumptions (e.g., bounded iterates). To address these limitations, we introduce a novel … Read more

An Adaptive and Parameter-Free Nesterov’s Accelerated Gradient Method for Convex Optimization

We propose AdaNAG, an adaptive accelerated gradient method based on Nesterov’s accelerated gradient method. AdaNAG is line-search-free, parameter-free, and achieves the accelerated convergence rates \( f(x_k) – f_\star = \mathcal{O}\left(1/k^2\right) \) and \( \min_{i\in\left\{1,\dots, k\right\}} \|\nabla f(x_i)\|^2 = \mathcal{O}\left(1/k^3\right) \) for \( L \)-smooth convex function \( f \). We provide a Lyapunov analysis for … Read more

AdaBB: Adaptive Barzilai-Borwein Method for Convex Optimization

In this paper, we propose AdaBB, an adaptive gradient method based on the Barzilai-Borwein stepsize. The algorithm is line-search-free and parameter-free, and essentially provides a convergent variant of the Barzilai-Borwein method for general unconstrained convex optimization. We analyze the ergodic convergence of the objective function value and the convergence of the iterates for solving general … Read more