Relaxed Proximal Point Algorithm: Tight Complexity Bounds and Acceleration without Momentum

In this paper, we focus on the relaxed proximal point algorithm (RPPA) for solving convex (possibly nonsmooth) optimization problems. We conduct a comprehensive study on three types of relaxation schedules: (i) constant schedule with relaxation parameter \(\alpha_k\equiv \alpha \in (0, \sqrt{2}]\), (ii) the dynamic schedule put forward by Teboulle and Vaisbourd [TV23], and (iii) the … Read more

AdaBB: Adaptive Barzilai-Borwein Method for Convex Optimization

In this paper, we propose AdaBB, an adaptive gradient method based on the Barzilai-Borwein stepsize. The algorithm is line-search-free and parameter-free, and essentially provides a convergent variant of the Barzilai-Borwein method for general unconstrained convex optimization. We analyze the ergodic convergence of the objective function value and the convergence of the iterates for solving general … Read more

A Single-Loop Algorithm for Decentralized Bilevel Optimization

Bilevel optimization has gained significant attention in recent years due to its broad applications in machine learning. This paper focuses on bilevel optimization in decentralized networks and proposes a novel single-loop algorithm for solving decentralized bilevel optimization with a strongly convex lower-level problem. Our approach is a fully single-loop method that approximates the hypergradient using … Read more

A golden ratio primal-dual algorithm for structured convex optimization

We design, analyze and test a golden ratio primal-dual algorithm (GRPDA) for solving structured convex optimization problem, where the objective function is the sum of two closed proper convex functions, one of which involves a composition with a linear transform. GRPDA preserves all the favorable features of the classical primal-dual algorithm (PDA), i.e., the primal … Read more

A TVSCAD approach for image deblurring with impulsive noise

We consider image deblurring problem in the presence of impulsive noise. It is known that \emph{total variation} (TV) regularization with L1-norm penalized data fitting (TVL1 for short) works reasonably well only when the level of impulsive noise is relatively low. For high level impulsive noise, TVL1 works poorly. The reason is that all data, both … Read more

A general inertial proximal point algorithm for mixed variational inequality problem

In this paper, we first propose a general inertial \emph{proximal point algorithm} (PPA) for the mixed \emph{variational inequality} (VI) problem. Based on our knowledge, without stronger assumptions, convergence rate result is not known in the literature for inertial type PPAs. Under certain conditions, we are able to establish the global convergence and nonasymptotic $O(1/k)$ convergence … Read more

Inertial Proximal ADMM for Linearly Constrained Separable Convex Optimization

The \emph{alternating direction method of multipliers} (ADMM) is a popular and efficient first-order method that has recently found numerous applications, and the proximal ADMM is an important variant of it. The main contributions of this paper are the proposition and the analysis of a class of inertial proximal ADMMs, which unify the basic ideas of … Read more

Inertial primal-dual algorithms for structured convex optimization

The primal-dual algorithm recently proposed by Chambolle \& Pock (abbreviated as CPA) for structured convex optimization is very efficient and popular. It was shown by Chambolle \& Pock in \cite{CP11} and also by Shefi \& Teboulle in \cite{ST14} that CPA and variants are closely related to preconditioned versions of the popular alternating direction method of … Read more

A general inertial proximal point method for mixed variational inequality problem

In this paper, we first propose a general inertial proximal point method for the mixed variational inequality (VI) problem. Based on our knowledge, without stronger assumptions, convergence rate result is not known in the literature for inertial type proximal point methods. Under certain conditions, we are able to establish the global convergence and a $o(1/k)$ … Read more

Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization

The nuclear norm is widely used to induce low-rank solutions for many optimization problems with matrix variables. Recently, it has been shown that the augmented Lagrangian method (ALM) and the alternating direction method (ADM) are very efficient for many convex programming problems arising from various applications, provided that the resulting subproblems are sufficiently simple to … Read more