Integer linear programming formulations for the minimum connectivity inference problem and model reduction principles

The minimum connectivity inference (MCI) problem represents an NP-hard generalization of the well-known minimum spanning tree problem. Given a set of vertices and a finite collection of subsets (of this vertex set), the MCI problem requires to find an edge set of minimal cardinality so that the vertices of each subset are connected. Although the … Read more

An Improved Flow-based Formulation and Reduction Principles for the Minimum Connectivity Inference Problem

The Minimum Connectivity Inference (MCI) problem represents an NP-hard generalisation of the well-known minimum spanning tree problem and has been studied in different fields of research independently. Let an undirected complete graph and finitely many subsets (clusters) of its vertex set be given. Then, the MCI problem is to find a minimal subset of edges … Read more