Solving the Heilbronn Triangle Problem using Global Optimization Methods

We study the Heilbronn triangle problem, which involves placing \(n\) points in the unit square such that the minimum area of any triangle formed by these points is maximized. A straightforward maximin formulation of this problem is highly non-linear and non-convex due to the existence of bilinear terms and absolute value equations. We propose two … Read more

Convex Relaxations of Non-Convex Mixed Integer Quadratically Constrained Programs: Projected Formulations

A common way to produce a convex relaxation of a Mixed Integer Quadratically Constrained Program (MIQCP) is to lift the problem into a higher dimensional space by introducing variables $Y_{ij}$ to represent each of the products $x_i x_j$ of variables appearing in a quadratic form. One advantage of such extended relaxations is that they can … Read more

Disjunctive Cuts for Non-Convex Mixed Integer Quadratically Constrained Programs

This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult because they combine two kinds of non-convexities: integer variables and non-convex quadratic constraints. To produce strong relaxations of MIQCP problems, we use techniques from disjunctive programming and the lift-and-project methodology. In particular, … Read more