## Combinatorial Integral Approximation for Mixed-Integer PDE-Constrained Optimization Problems

We apply the basic principles underlying combinatorial integral approximation methods for mixed-integer optimal control with ordinary differential equations in general, and the sum-up rounding algorithm specifically, to optimization problems with partial differential equation (PDE) constraints. By doing so, we identify two possible generalizations that are applicable to problems involving PDE constraints with mesh-dependent integer variables, … Read more