Polyhedral investigations on stable multi-sets

Stable multi-sets are an evident generalization of the well-known stable sets. As integer programs, they constitute a general structure which allows for a wide applicability of the results. Moreover, the study of stable multi-sets provides new insights to well-known properties of stable sets. In this paper, we continue our investigations started in Koster and Zymolka … Read more

Facets of a polyhedron closely related to the integer knapsack-cover problem

We investigate the polyhedral structure of an integer program with a single functional constraint: the integer capacity-cover polyhedron. Such constraints arise in telecommunications planning and facility location applications, and feature the use of general integer (rather than just binary) variables. We derive a large class of facet-defining inequalities by using an augmenting technique that builds … Read more

Clique Family Inequalities for the Stable Set Polytope of Quasi-Line Graphs

In one of fundamental work in combinatorial optimization Edmonds gave a complete linear description of the matching polytope. Matchings in a graph are equivalent to stable sets its line graph. Also the neighborhood of any vertex in a line graph partitions into two cliques: graphs with this latter property are called quasi-line graphs. Quasi-line graphs … Read more

Stable Multi-Sets

In this paper we introduce a generalization of stable sets: stable multi-sets. A stable multi-set is an assignment of integers to the vertices of a graph, such that specified bounds on vertices and edges are not exceeded. In case all vertex and edge bounds equal one, stable multi-sets are equivalent to stable sets. For the … Read more